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SUMMARY:: This publication addresses the issues of modding, uncertainty quantification, model
vaidation and numericd predictability. With the increasing role of numericad smulation in science,
technology as well as every day decision-making, assessing the predictive accuracy of computer models
becomes essentid. Conventiona approaches such as finite dement model updating or Bayesan
inference are undeniably useful tools but they do not fully answer the question: How accurately does
the model represent reality? Fird, the evolution of scientific computing and consequences in terms of
modding and analyss practices are discussed. The intimate relationship between moddling and
uncertainty is explored by defining uncertainty as an integrate part of the model, not just parametric
variability or the lack of knowledge about the physical system being investigated. Examples from nuclear
physics and gtructural dynamics are provided to illugtrate issues rdlated to uncertainty, vaidation and
predictability. Finaly, festure extraction or the characterization of the dynamics of interest from time
seriesis discussed.

KEYWORDS: Numericd predictability, uncertainty anayss, modd validation, design of experiments,
feature extraction, parameter calibration, finite dement modd updating.

. INTRODUCTION

Today’s computationd resources make it more than ever possble to modd and andyze complex
phenomena characterized by complex geometries and boundary conditions, multi-physics, nonlinear
effects and variability. An example of such resource is the U.S. Department of Energy’s Accelerated
Strategic Computing Initiative (ASCI) that has developed severd platforms able to sustain over 3 x
102 operations per second (or 3 TeraOps) by distributing computations over arrays of more than
6,000 processors. The next generation of ASCI computers is expected to reach 30 TeraOps by the
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year 2004 with the god of gpproaching 100 TeraOps afew years later. Examples of problems requiring
access to these multi-physcs codes and massvely pardld architectures include globd climate
prediction, epidemics modding, computationd molecular dynamics, thermo-nuclear physics and
complex engineering smulations. Reference [1] discusses the overall ASCI program and its objectives.

In addition to improving computational resources, as we know them today, groundbresking
discoveries are being made in the area of quantum computing, a fidd thought to be an eegant but
impractica theory only afew years ago. This technology enables scientists to store informetion (bits of
zeros and ones) as podtive or negative spins of dementary particles that form the building blocks of
molecules. Immediate and obvious advantages are infinitely large memory sizes and rapidity of accessto
the information bounded only by the speed of light. Moreover, the theory of quantum mechanics states
that an dementary particle may feature pogtive and negative spin vaues smultaneoudy. Thus, a single
paticle may potentidly store two bits of information at once. Just like a “conventional” computer
combines analog bits to perform an operation, a quantum computer would combine the spin values of its
elementary particles to add and multiply numbers or search a database. Since one particle can store two
pieces of information, two particles can access Z bits. If a very smal number of particles can be
dabilized, say, no more than 1,000, then this quantum computer could potentialy access 2to-the-
power-10"2 bits smultaneoudly. Assuming that the multiplication of two 256-digit numbersinvolves 107
bits of information, this trandates into 10" TeraOps of computing power for a single moleculé
Precticd difficulties such as veification dgorithms and the indability of this information Storage
technology (typicaly, a particle may randomly change its spin value as often as every 10™ seconds) are
currently being addressed at Los Alamos and other national [aboratories and university research centers.

Quantum computing will probably not offer any practicd outcome for severa decades but it is
undeniable that unprecedented computational resources are becoming available. What will be the impact
on our modding capabilities and analys's practices?

Obvioudy, the hypothess sustaining the development of ASCI-class computing resources is that
predictive accuracy can be achieved if enough “detalls’ and “physcs’ can be included in the numericd
amulation. For example, physicigs and mecanicians are increasingly involved in the development and
implementation of condtitutive modds at the microscopic and nano-scae levels based on basic physics
(or “firdt principles’) such as datigicd quantum mechanics. The intent is to capture the physics of
interest at the source rather than relying on globa and somewhat arbitrary quantities generdly defined in
solid mechanics such asmoda damping ratios.

In addition to demongrating that complex phenomena can be coupled together and smulated
numericdly, scientists are increasingly becoming concerned with the predictive accuracy of ther
numericd modds. This emerging field is often referred to as model validation. Here, the centra
question is How accurately does the model represent reality? It congss of determining the
predictive quaity of numericd smulations and assessing the degree of confidence with which models
can be andyzed outside of their nomind operating conditions. Caution must however be exercised to
avoid the common confuson between mode verification and mode validation. For example,
consgder ancient Greek astronomy. The models developed by Pythagoras, Aristotle and Ptolemy
between 500 BC and 300 BC dominated Western astronomy for nearly 2,000 years. They exhibited



various leves of complexity but al shared the characteristic that our Sun and other planets of our solar
system did gravitate around the Earth. These models were somewhat consistent with each other, they
fulfilled their purpose of predicting with remarkable accuracy the cycles of seasons and they even
matched physica observation. Y et, they were not accurate representation of redlity.

In this work, we conform to the U.S. Department of Energy’s definition of verification and
vaidation where, basicdly, verification consgts of verifying that equations are solved correctly while
validation consgts of verifying that the equations implemented provide an acceptable representation of
redity. This publication discusses the concepts of modding, uncertainty, modd vaidation and
predictability in the context of large-scae numerica smulations. The discussion is illudrated usng an
engineering application currently dedt with at Los Alamos Nationd Laboratory. References [2-4] offer
additiona details regarding the particular andysis techniques and results to which the discussion refers.

1. CONCEPTUAL VIEW OF MODELING AND UNCERTAINTY

In this work, uncertainty is defined as the omitted or unknown part of a mathematica mode. This
definition is somewhat different from the parametric varigbility or lack-of-knowledge views generdly
agreed upon in the sdentific community. It is aso implied that numericd smulations should dways
include a representation of the uncertainty associated with a particular model. Thisis consstent with our
approach to moded validation that states that there is no such thing as mode “validation” because dl that
datistica testing can assess is the degree to which a modd bresks down, not the degree to which a
mode works.

To illustrate how model order truncation and uncertainty are related to the process of moddling a
given phenomenon, we consder the example of two dementary particles interacting with each other.
Thisis a common problem in quantum mechanics further complicated by extreme uncertainty (the well-
known Heisenberg principle states that position accuracy is bounded by momentum uncertainty, and
vice-versa) and large scaing differences (heavy particles interact with much lighter particles). Credit
must be given to Reference [5] for origindly discussng this example in the context of uncertainty
andysis. Our system is formed of two particles, X; and x,, interacting with each other. Thefirg particle
denoted by X is the primary system of interest. Its dynamic is influenced by a secondary particle
denoted by x,. We have no red interest in predicting the dynamic of x; but it isincluded in the equations
because of the interaction with the main degree- of-freedom. The equations of motion considered are:

X,
It

2
+22(1+x3)X, =0, e2%+?§(1+xi)xz=0 (1)

In the numerica application, values of ?, and ? , are kept congtant and equa to one. The initid
conditions of the primary paticle X; are set to one for digolacement and zero for velocity. Initiad
conditions in both digolacement and velocity for the secondary particle x, are uncertain and vary
uniformly among 13 discrete vaues {10%; 3x10™: 7x10™: 1; 3; 7; 10™%; 3x10™; 7x10™*; 10"% 3x10*%
7x10"%; 10"%}. Another important characteristic of the system of equations (1) is thet the secondary
particle is very light compared to the other one. The mass of the secondary partice is € = 10° times



amdler than the mass of the primary particle. This introduces ill-conditioning and convergence difficulties
when, for example, Runge-Kutta finite differences are implemented to solve the sysem of patid
differentid equations (1). Figure 1 illustrates the output when equations (1) are integrated numericaly in
time. The top figure shows the pogtion X; and the bottom figure shows the postion x,. Note the
amplitude difference in pogtion between the two degrees-of-freedom. Displacements of the secondary
particle are gpproximately three orders of magnitude smaller. As the second mass becomes smdler, the
response X, becomes rgpidly varying and suitable for satistica treatment.
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Fig. 1. Responses of the Two Degrees-of-freedom System.
(Top: Displacement of the primary particle X;. Bottom: Displacement of the secondary particle
Xo. Initial conditions are set to {1; 7} for displacements and {0; 0.3} for velocities.)

We gart by solving the fully coupled equations (1) for al possble combinations of initial conditions
for the secondary particle. The position and momentum of particle x, can assume 13 discrete vaues
each, which leads to a full factorid andysis of 13° = 169 systems. Figure 2 illustrates the position of
particle X, versus time obtained for the 10", 60", 100" and 150" systems. It can be observed that the
system of equations (1) spans awide range of dynamics. Responses range from linear, sngle degree-of-
freedom oscillators (top Ieft) to damped, linear systems (top right) and systems featuring time varying,
higher-frequency harmonics (bottom left). The forth system (bottom right) exhibits chaotic behavior and
a component that eventudly grows unstable. Being able to characterize the dynamics of responsesis an
important step of modd vaidation. Feature extraction is further addressed in section V. The information
generated by s0lving the equations (1) for al possble combinations of initid conditionsis summarized in
Figure 3. It shows the most probable state of each particle in the positiont momentum plane. The most
probable states of the primary particle X; are shown on the top haf while those of the secondary
particle x, are shown on the bottom haf. Hence, Figure 3 illugtrates the output variability obtained by
propagating uncertain initid conditions through the forward cadculation.
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Fig. 2: Four Typical Responses of the Two Degrees-of-freedom System.
(Initial conditions for X; and its momentum are kept constant and equal to (1; 0). Initial
conditions for x, and its momentum are as follows. Top Left: IC = (10™; 10°). Top Right: IC =
(1; 3x10°). Bottom Left: 1C = (10; 7x10°). Bottom Right: 1C = (10*% 10°).)
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Fig. 3: Most Probable Position-Momentum States of Particles X; and X..
(Top: Mean state values of particle X;. Bottom: Mean state values of particle x,. Note that
numerical values are plotted on different horizontal and vertical scales. Also noticeable are the
different correlation structures of the joint probability distributions of particles 1 and 2.)



The dynamics of particle X; is now represented as a single degree-of-freedom linear oscillator. The
coupling with particle x, is completely ignored and replaced by a random process. This illustrates
Stuations where the correct model order is unknown or the mode of interaction between particles X,
and X, is not avalable. Obvioudy, integrating the time response of particle X; based on a linear
ocillator representation would result into large prediction errors. However, unavailable modeling
information can advantageoudy be replaced by probabilistic information. Figure 4 pictures the most
probable position-momentum states of the 169 systems for the full factorid analyss. Solutions obtained
with uniform didtributions are shown on the top haf and solutions obtained with norma digtributions are
shown on the bottom haf. Both results can be compared to the “true” solution shown in Figure 3 (top
half). It can be observed from a comparison of Figures 3 and 4 that the correation structure between
position and momentum islost. This is expected because the physics-based coupling is replaced with an
arbitrary random process. Neverthdess, the gpproximated solutions are consstent with the true
solutions. Another advantage is that the linear oscillator equations can be solved in afraction of thetime
required to integrate the coupled equations (1) because they are well posed.
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Fig. 4. Most Probable Sates of Particle X; With Coupling Approximated.
(The figure shows the mean position and momentum values of particle X; obtained for each one
of the 169 systems when the coupling term with particle x; is replaced by a random process. Top:
Uniform distributions. Bottom: Normal distributions.)

Uncertainty originates from severd practices commonly adopted during modeling such as sdecting
an inadeguate mode form, truncating the model order, gpproximating equations and introducing
parametric variability. Uncertainty cannot be dissociated from modeling. Attempts to explain a complex
physicd experiment by mathematicd modes define uncertainty. Computer smulations should therefore
not be attempted without including a representation of the uncertainty associated with modeling
assumptions. This implicitly defines modd vdidation as an exercise where the consstency between
modd output and redlity is assessed away from the model’s nomind operating ranges. The two-particle



example illugrates that potentidly missng information can be replaced by adequate Satistica treatment.
Since a random process can dways be parameterized, hyper-parameters such as the mean, variance,
covariance structure and higher-order gtatistics can be cdibrated to improve the predictability of the
computer smulaion. Anillustration of modd cdibration via Bayesan inference is provided in section 111.

We have mentioned that missing information can be replaced by probabilistic information. Other
frameworks are avalable for quantifying and propageting uncertainty that may offer dtractive
dternatives to the theory of probability especidly in the event of extreme uncertainty. Among them, we
cite the Dempster- Shafer theory of possibility and belief [6], the theory of fuzzy sets[7], information gap
theory and convex models of uncertainty [8]. In the remainder, uncertainty is represented by probability
densty functions. Thisis a reasonable assumption when dedling with physics or engineering gpplications
where reasonable amounts of test data are available and the systems investigated are governed by well-
established theories.

[11.PREDICTABILITY IN COMPUTATIONAL SCIENCES

Currently, dl computationa sciences are, to various degrees, struggling with the notion of numerica
predictability, uncertainty quantification and modd vdidation. The reason is because scientids are
increasingly relying on numerical modes to make predictions and replace physica measurements. Asthe
computer models grow in Sze and complexity, so does the need to assess their vaidity especidly when
full-scale testing is not available. To illustrate these trends, an example from nuclear physicsis provided.
It involves the inference of atime-varying parameter from uncertain measurements.

When fissonable materids are assembled, the system can become criticdl, that is, neutron fluxes can
grow exponentialy. The measure of this criticdity is a parameter known as the Ross dpha. It is defined
astherate a which the neutron flux grows.

a(t) = 1 fiy(®) _ fin(y()
yt) Tt it

2

In equation (2), the symbols a(t) and y(t) denote the Ross dpha parameter and the neutron flux,
repectively. To develop a numerica modd of criticdity, the vaue of a(t) must be inferred from the
measurement of Ros3 traces y(cos(2pfrt)). Because the neutron flux increases rapidly during a
criticaity experiment, the time variable is replaced by a pseudo-time cos(2pfrt). Figure 5 illustrates a
typica amplitude growth of a neutron flux.

The inverse problem thus consgs of obtaining the vaue of a(t) that best reproduces the test data
{Xx; yx}. One formulation among others is Bayesan inference. It has shown great success for this
particular application and details about the procedure can be obtained from References [9-10]. Firg, a
parametric mode is chosen for representing the unknown function a(t). This modd trandates the prior
knowledge about the Ross dpha and depends on unknown parameters that are collectively denoted by
the symbol ?. Next, the sources of uncertainty must be assessed and propagated. The main uncertainty
for this application resides in the placement of data points from measurement readings. Each point



shown in Fgure 5 is typicaly associated with uncertainty in the x-direction and y-direction. For
smplicity, we denote by s, and s, the standard deviations corresponding to the placement of data Xy
and Yy, respectively. This assumes that uncertainty in the placement of points in the (x; y) plane is
uncorrelated, which is an assumption that test data generally do not support. If the correlation 7y, can
be ignored, a natural metric that expresses the “distance” between test data and numericd smulation is
represented by the minus-log likelihood of the observed data given the current modd:

,2 .2
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Other potential sources of uncertainty, not accounted for in equation (3) for clarity, might include
uncertainty in the nature of the parametric model used to represent the Ross dpha parameter a(t) and
uncertainty in the hyper-parameters ?. Smoothness parameters are typicaly included in the set ? to
control the prior knowledge about the problem. Prior knowledge plays the same role as “regul arization”
in the resolution of ill-posed inverse problems. Equation (3) also assumes that statistica ditributions are
normally distributed which does not have to be the case.
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Fig. 5: Amplitude Growth of a Neutron Flux During Criticality.
(The amplitude of a neutron flux is illustrated on a log-scale as a function of cos(2pfrt) where fr
denotes the Ross frequency. The shape of the curve is characteristic of physical measurements,
however, the values are numerically simulated for the purpose of thisillustration.)

Inference of the modd a(t) and, potentidly, inference of the unknown hyper-parameters ?, is
achieved according to the Bayes law that states that the posterior didtribution of the modd given the
avalable dataor P(a | X; Yk) is equd to the likdihood function P(x«; Yk | @) multiplied by the prior
digribution P(a):

P(a| X« yx) = P(X; Y« | @) P(a) (4)



The objective naturdly becomes to maximize the posterior digtribution, which trandates thet the
model sought is the one that is most consistent with test observation. Smilarly, the posterior distribution
of hyper-parameters given the data or P(? | Xx; Yk) can be maximized to infer the vaue of hyper-
parameters ? that are most condgtent with test data. At this point, an optimization solver can be
implemented to maximize the pogerior digtributions P(a | Xk; Yk) or P(? | Xk; Y«). One particularly
atractive choice is the Markov Chain Monte Carlo (MCMC) agorithm. The MCMC method
generates a random sequence of parameters a(t) that samples the pogterior distribution P(a | Xk; Y«)-
The main advantage of the MCMC optimization is that sampling can be carried out independently of the
digtribution being sampled. In particular the assumption of norma probability distribution, which is
encountered in many formulations for the only purpose of alowing tractable andytica derivations, is
irrdlevant. For more detalls, the reader is referred to Reference [11] where a tutorid of MCMC
methods is provided. Figure 6 illugtrates three redlizations of a(t) obtained through MCMC sampling of
the Bayesian posterior distribution (4).
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Fig. 6: MCMC Inference of Ross Alpha a(t) From the Bayesian Posterior.
(The figure illustrates that several optimal solutions can be obtained that are statistically
consistent with physical measurements. If enough independent samples can be drawn from the
posterior distribution, basic statistics about the inferred parameter a(t) can also be estimated.)

The purpose of this example is to illudrate inverse problem solving. In the presence of uncertainty,
severd optima solutions can be obtained that remain consstent with the physica observation. Exploring
the pogterior digtribution therefore becomes critical. If enough independent samples can be drawn from
the pogterior probability didribution, basic statistics about the inferred parameters—mean, variance,
covariance dructure, etc—can be estimated. Hence, the uncertainty observed through physica
experimentation can be related to parametric variability of the modd, which is important information for
design and decision-meking.

Bayesan inference represents one of many possble formulaions among which we cite maximum
likelihood, Mahandobis hypothess testing, Kullback-Leibner entropy and Chernov entropy. The
datigtica techniques developed for hypothesis testing or group classification can generdly be gpplied to



formulate inference problems. Methods such as finite dement modd updeting, parameter identification
and parameter cdibration (also referred to as parameter “tuning”) al fal under this generd description.
However, we stress that a calibrated mode by no means condtitutes a validated mode, as commonly
accepted in the finite ement updating community. Vdidation is fundamentaly a statement about
predictability whereas cdibrated models are, a best, only able to match physica measurements at one
or severd design points.

V. ASCI ENGINEERING APPLICATIONS

Quantifying shock transmisson through complex, jointed structures has traditiondly been possble
only with experimenta methods. These experiments are expensive and time-consuming and thus only a
few cases can be studied. With the advent of large scale computing capabilities, estimation of the shock
transmission with numerical modds is becoming a tractable problem. The ASCI computing environment
is being used a Los Alamos to study, among other things, the transmisson of these shocks through
complex, jointed structures. This on-going experiment is summarized to illudrate the vaidation of
engineering gpplications in structurd dynamics.

4.1 The Forward Mount Impulse Test

The test article used for the vaidation experiment conssts of severa components fabricated from a
vaiety of materias. A titanium component designated the “mount” is shown in Figure 7 (top left). All
other components are connected to the titanium mount. The upper payload mass smulator, which is
fabricated from 6061-T6 aluminum, is bolted to the three feet on the upper end of the mount. The lower
payload mass smulator, which is fabricated from carbon sted, is hed ingde the mount using a tapered
tape joint. The tapered tape is fabricated from SS-304 dainless sed and is inserted through the thin,
horizontal dot near the base of the mount. Separate pieces of the tapered tape are driven in, wedging
the mass amulaor agangt an inner retaining surface. All these components are pictured in Figure 7
(bottom left).

The lower shdll, fabricated from 7075-T4 duminum, and then anodized, is placed over the titanium
mount and its rim Sits on a ledge just below the threaded portion of the mount. Next, a titanium retaining
nut threads onto the titanium mount bearing againg the upper surface of the lower shel rim. A specified
torque vaue is goplied. Findly, the upper shdl, dso fabricated from duminum, is threaded onto the
mount. As this second specified torque is gpplied, the load between the retaining nut and lower shell is
somewhat reduced.

Figure 7 (right) aso shows that the test article is sugpended using wire rope. This creates a pendulum
with alength of about one meter. Pendulum motion is monitored using high-speed photography and fiber
optic-based disolacement sensing. An explosive source is developed to apply an impulsive load to a
portion of the outsde surface of the test article. The source is fabricated from grips of thin explosve
sheat materid. The explosve drips are smultaneoudy initiated using an explosive lens. The pressure at
the surface of the tet article is moderated with a buffer materid made from solid neoprene. Prior to



testing, the explosive load underwent a careful characterization to make sure that the correct impulse
was measured.



Fig. 7: Forward Mount and Other Components of the Assembly.
(Top Left: Titanium forward mount. Bottom Left: Other components of the assembly. From left
to right, lower shell; titanium mount and bolted mass simulator; retaining nut and upper
cylindrical shell. Right: Instrumented system, explosive grid and testing fixture.)

The test article is ingrumented with 33 drain gages and 6 accderometers. The strain gages are
attached to the indde surface of the titanium mount and have an active length of 0.8 mm to obtain
localized effects. The sx acceerometers are Endevco model 7270A-200k and are located on either
end of both payload mass smulators. Four are oriented lateraly in the direction of the delivered impulse
and two are oriented aong the axis of the structure. Measured strains range up to 1.0% and have a
frequency response of 100 KHertz. Peak accelerations after low-passfiltering at 50 KHertz range up to
10,000 g’'s. The comparison of strain and acceleration responses in Figure 8 (left) indicates that the
shock wave rapidly propagates through the main joint. The ringing of the mass smulators is attenuated
after 5to-6 millissconds. The sixth acceeration response is used to define the input excitation of a
shock response spectrd (SRS) andlysis. The SRS in Figure 8 (right) shows the peak acceleration
response that would be witnessed by a single degree-of-freedom system whose fundamenta frequency
is set by the horizonta axis. Clearly, nost of the resonant dynamics occur between 10 and 30 KHertz,
which would make andys's techniques based on moda superposition impractica. The SRS estimates
the acceleration levels that would be witnessed, for example, by an e ectronic component.
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Fig. 8: Typical Impulse Response of the Forward Mount Test Article.
(Top Left: Srain 1 located behind the explosive grid. Bottom Left: Acceleration 1 located on the
lower mass simulator. Right: SRS of the 6™ acceleration response with 2% modal damping.)

Figure 9 compares the strain responses collected at location 1 (ingde the mount, behind the
explosive grid) during two replicate tests. Only the first 400 microseconds of response after detonation
are shown. It can be observed that the peak strain and “low-frequency” content are very smilar. The
discrepancy between the two curvesis attributed to the variability of the experiment. The main source of
vaiability is a tolerance and assembly-positioning threshold that is controlled during these two
experiments. The comparison illudtrates that, in addition to predicting the dynamics of interest, the
numerica mode should aso reproduce the variability inferred from physical observations when replicate
data sets are available.
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Fig. 9: Comparison of Srain Responses Collected During Two Smilar Tests.
(Responses of strain sensor 1 located behind the explosive grid. Solid, blue line: Response when
the assembly is closely controlled. Dashed, red line: Response with a “ loose” assembly.)



4.2 Finite Element Modeling and Analysis

The explicit finite eement mode of the test article is developed using the ParaDyn finite e ement code
[12]. In generd, explicit formulations are preferred for such problems because of their nonlinear nature
and the fact that numerous contact conditions must be handled. The mode has agpproximately 1.4 million
8-node hexahedra elements, 56,000 4-node shell eements, 480 contact surfaces and 1.8 million node
points. It results nto 6 million degrees of freedom that include structura digplacements and Lagrange
multipliers defined at the contact interfaces. The large number of contact pairsis required because each
individud surface, usudly circumferentia in nature, has to be broken into severa individua surfaces to
accommodate efficient partitioning for the pardld code. Automatic contact capabilities that are currently
under development in ParaDyn will obviate the need to bresk the contact into so many surfaces. The
computationd mesh is illugrated in Figure 10. The finite dement modd is currently run on 504
processors on the Los Alamos Blue Mountain ASCI computer. Using this number of processors results
in 1.3 CPU hours for each millisecond of smulation.
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Fig. 10: Computational Mesh of the Threaded Joint and Bolts.
(Viewed from the inside of the titanium mount, one of the upper mass simulator’s bolts and a
section of the retaining nut are visible between the assembly of upper and lower shells.)



Preloading due to assembly of the threaded joints and the tape joint is accomplished in the modd by
implementing an orthotropic thermd coefficient of expansion in specific layers of dements. At the Sart
of each andysis, the temperature is increased using a haf-cosne time history over 0.2 milliseconds. The
gructure is then alowed to fregly respond with no additiond input for 0.1 milliseconds before gpplying
the explosive impulse. The impulse is gpplied over the appropriate region of the test article as a pressure
time history.

4.3 Uncertainty Analysis

Because the contact involves interfaces among stainless sted, carbon sted, anodized 7075-T4
auminum, 6061- T6 aluminum, and titanium, precise sdection of atic and kinetic coefficients of friction
is not possible. Some of the variables that contribute to the coefficients of friction include surface finish,
surface hardness and the presence of lubricants. Since these are not known, these coefficients of friction
are estimated by bounds and allowed to vary between specified limits Lacking a precise definition of
the coefficients of friction aso leads to unknown levels of preoads. Therefore, the preloads are aso
dlowed to vary between specified limits among the different runs. Based on engineering judgment, a
total of twelve parameters are defined as having a rdaivey high uncertainty associated with their vaue.
These parameters consst of three component preloads, four static and four kinetic coefficients of
friction and the magnitude of the explosve impulse.

Inthis section, we illugtrate one of the steps that would be involved in atypicd vaidation experiment.
A parameter effect andyss is performed to determine which of the twelve input parameters are most
responsible for explaining the tota variability of the output. Other steps, not discussed here, would
include parametric cdibration, characterization of the modd output's probability information and
assessment of the modd’s predictive qudity. All these andlyses share the need to generate response
surface models (RSM) to replace the expensve, large-scde smulations [13]. Four of the twelve input
parameters of interest can take two possible vaues and the remaining eight parameters can take three
possible vaues. The total number of runs to build a full factoria analysis would therefore be equa to 2*
x 3% = 104,976, a number that would require nearly 8 years of computationa time using 6,000
processors of a 3 TeraOps ASCI platform! To limit the required smulation time, a subset of 48 runsis
completed from parameter samples sdected using the Taguchi orthogonal array technique [14]. After
these 48 runs have been completed and the appropriate features have been extracted, a statistical RSM
of theform

y=a,+ é a;p; + é. é Bijpipj 5)

i=1-12 i=1.-12j=1-12,j% i

is fit to the computer data for each feature of interest. The difference with a conventiona response
aurface is essentidly that detidicd testing and analysis of variance (ANOVA) techniques are used to
retain only the most sgnificant interaction parameters {a;; (3;}. Linear and second-order coefficients a;
and [¥; are defined as Satistics whose probability information is available for further Satistica trestment
such as re-sampling and hypothesis testing. When no other option is available but an extremdy sparse



sampling of the input space, specid care must be brought to sdecting a desgn matrix that avoids
aliasing. Aliasing in gatisticadl modeling refers to contamination of main (linear) effects by secondary
(higher-order) effects and is caused by a too sparse sampling matrix. Obvioudy, any sampling matrix
must provide the ability to digtinguish the variance associated with the linear effect of a variable from the
other variables. But it can happen that linear effects (such as a;) are confounded or diased with second
order or higher effects (such as [3;). With a Taguchi orthogond array, columns of the design matrix are
not corrdated with other columns and, in addition, are free of interaction with second-order effects. This
makes for efficient linear screening.

Because the tranamission of shock across the mount to the payload components is the primary event
of interest, errors between the predicted and measured gtatisticdl moments of the time history, shock
response spectrum and power spectra dendty (PSD) at each accelerometer location are used as
features. Time histories are regtricted to the first four milliseconds following detonation and the SRS and
PSD analyses are performed from 0-to-50 KHertz with a uniform 2% critical damping for the SRS. The
first and second statistical moments (mean and stlandard deviation) are investigated. Hence, atotd of 36
output features are defined (6 accelerometers x 3 criteriax 2 moments). For each one of them, alinear
daidicd RSM is constructed. Statistical tests are implemented to assess the global contribution of each
input parameter to the totd variability observed from the computer smulations. A popular example is
the Rsquare (R?) dtatistics that estimates Pierson’s correlation ratio. It is defined as the ratio between
the variance that can be attributed to a given effect and the total variance of the data[15]:
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Fig. 11: Parameter Contributions Calculated From the Analysis of Variance.
(Left: ANOVA of accelerations 1-3. Right: ANOVA of accelerations 4-6. The feature analyzed is
the variance s? of the difference between predicted and measured SRS. Percentages show the
contribution of each input parameter to the total variance of the output feature.)



A trend is observed for features from dl sensors indicating sgnificant effects due to the following five
parameters. one preload (p,), three kinetic coefficients of friction (ps, P, P11) ad the impulse
magnitude (p2). The R values obtained by andyzing the standard deviation of SRS errors are pictured
in Figure 11. The sx acceleration locations exhibit globa sengtivity to at least one of the five parameters
P1, Ps, P10, P11 @d pio. For location 2, the other two preloads p, and p; are sgnificant but this linear
RSM only explains 32.4% of the output feature's tota variance. Linear models that do not explain at
least 50% of the totd variance are consdered suspect and higher-order parameter interactions should
be included. This analyss demondrates that the parameter space can be reduced from a dimension
equa to twelve to a dimenson equd to five, therefore, dlowing redistic generation of a higher-order
RSM’s.

V. FEATURE EXTRACTION

In this section, the notion of feature extraction is discussed. Festures are defined as small-
dimensiond quantities that extract information from physica observation or computer output. Obvioudy,
their definition is application-dependent and they should satisfy two other criteria Firet, a feature must
provide ingght regarding the physics investigated. Second, it must be sengtive to changes in the input
parameters, whether “sensitivity” is defined localy or as a globd parameter effect (R? and other
satistics, ANOVA, etc.).

In linear structura dynamics, conventiond features are resonant frequencies, moda damping ratios
and mode shape vectors. Nevertheless, their gpplication is restricted to Sationary and periodic Sgnas
generated from the response of linear systems. Because non-linegrity is increesingly investigated,
attempts are made to generdize the notion of moda superposition to nonlinear dynamics, for example,
usng the wavelet transform and the proper orthogona decomposition. Success is documented in
Reference [16] (waveet transform) and Reference [17] (Karhunen-Loéve transform), among others.
However, these andlys's techniques remain based on the assumption of linearity and their application to
non-dationary data sets or nonlinear systems is necessarily limited. One of the reasons why dow
progress is made in areas such as condition diagnostics and hedlth monitoring of complex engineering
systems is because the features employed do not characterize the dynamics of interest with enough
accuracy. Another reason often mentioned is that conventiona features are not sengtive enough to loca
condition changes such as crack propagation or boundary condition change. Our opinion is that tools
commonly used in other scientific communities (e.g. physics, satistical sciences and pattern recognition)
are not exploited to therr full potentid.

The gpplicability of pattern recognition techniques is firgt illustrated using an Earthquake example that
has recently been publicized and widely distributed over the Internet [18]. On February 28, 2001, a
magnitude 6.8 Earthquake located thirty miles below the surface and a few miles away from Olympia,
Washington, moved the ground for 30-to-40 seconds. The recorded Earthquake waveform is shown in
Figure 12 (top). A sand-tracing pendulum located in the vicinity produced the patterns depicted in
Figure 12 (bottom right). The smooth curves seen to the outside of the Earthquake “rose” are what is
normally observed when someone sets the pendulum in motion to make atracing. The pattern produced
when the pendulum was started prior to the Earthquake is dill visble. It was then overwritten by another



pattern resulting from ground motion. Clearly, the difference between these two patterns indicates
different dynamics more s0 than a direct comparison between, for example, time series or shock

response spectra.
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Fig. 12: Records of the February 28, 2001 Earthquake at Olympia, Washington.
(Top: Timedomain signal. Bottom Left: Sand-tracing pendulum. Bottom Right: Patterns
produced by the pendulum. The pendulum performs a transform of the original signal analogous
to phase-amplitude decoupling. A steady-state periodic signal produces the circle-like pattern
seen on the outside. The transient Earthquake signal produces the twisted pattern at the center.)

The mathematica trandformation implemented by the pendulum is very similar to the State-space
representation of a symmetric dot pattern transform. Its efficiency for characterizing complex dynamics
is further illustrated with the two-particle interaction model. Congider the four sgnds y(t) shown in
Figure 2. They can be transformed into z(t) = a(t)e"™ where j? = -1 and the amplitude a(t) and phase
f (t) components are defined as.

a(t) — (y(t) _- ymin) , f (t):9+9(y(t +t)' ymin) (7)

max min max ymin)



The symmetric dot pattern method transforms the correation between vaues y(t) and y(t+t)
digant of a time shift t into polar coordinates. This transformation is used in the fidd of gpeech
recognition to express visudly, in an easy-to-understand figure, the changes in amplitude and frequency
content of sound signals. An gpplication to fault diagnosis is presented in Reference [19] where the
transformation is implemented to diagnose changes in sound signals between hedlth and faulty bearings.
In our example, the angle shift ? is set to 60 degrees, the amplification factor ? is set to 10.0 and the
time shift t is equal to /500" of the time record’s length. These parameters are determined somewhat
arbitrarily. When transformed, the previous four time series produce the patterns shown in Figure 13.
An immediate advantage is normdization. While the horizontal and vertica scdes are dl different in
Figure 2, the four subplots of Figure 13 are contained between —1 and +1, which makes for a
convenient comparison. Significant differences can be observed between the patterns produced by the
linear sgnds (top) and the nonlinear sgnds (bottom). The chaotic response is dso different from the
other three as indicated by the peculiar distribution of pointsin the complex plane.
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Fig. 13: Symmetric Dot Patterns From the Two-particle Systems.
(Upper Left: System 10; single mode, low-frequency response. Upper Right: System 60; single
mode, lightly damped response. Lower Left: System 100; high-frequency response with time-
varying frequency. Lower Right: System 150; chaotic and unstable response.)

Comparisons such as those illugtrated in Figures 2 and 13 are visudly gppeding but graphics do
not provide a quantitative assessment of the difference between data sets. Quantitative measures are
needed for inference and parametric cdibraion. This is because inverse problems are generdly
formulated as optimization problems. One solution is to train surrogate models to recognize the
difference between images and to reate the changes observed to characteristics of the origind modeds



or experiments. This is typicdly how pattern and image recognition techniques proceed [20]. The
dterndive is to further condense the information into low-dimensiond fegtures. This is essentidly what
moda frequencies achieve for linear, periodic systems. However, red ysems are likey to exhibit
complex dynamics that combine nonlinear, non-periodic, non-dationary and chaotic behaviors.
Although many signd processing techniques cannot accommodate this complexity, tools such as fracta
andyssare avallable that can.

The fracta of a sgnd is defined as one of its topologicad dimension. It represents the number of
degrees-of-freedom of the corresponding data set in a multi-dimensiona space. Obvioudy, the fracta of
a smooth curve is one, that of a surface is two, dc. Rigorous mathemetica definitions are available for
more complicated data sets [21]. Fractd models are gppropriate for andyzing signas that exhibit some
form of sdf-amilarity (for example, datigtical), strong irregularity and structure on a globa scale aswell
as arbitrarily fine scales. An gpplication is detailled in Reference [21] where an input-output mode of
cavitation diagnosis is congtructed between the fractd dimension of acoudtic pressure measurement and
the degree of cavitation in a pump. One estimate of the fractal dimengon is provided by the Higuchi
method that models the average evolution of the sgnd’s increment coefficients ?x ,. Increments for
samplesdigtant of k intervasin time are computed as.

N-1 o . .
Py S ——— +ik) - y(p +(i - Dk 8
> = 2N k) i:l_y%;lzg)p )- y(p +(i - DK) 8

where ?2(N;k;p) is defined as the lower integer part of (N-p/k). Theindex denoted by p in equation (8)
dlows multiple estimates on a angle time series and k denotes the time shift considered. The increment
coefficients 7, are averaged over the vaues of indices p and the Higuchi modd assumes a linear
relationship (on a log-log scale) between <?,>, the averaged increment coefficient at index k, and the
time shift index k:

(2,)=ak® ©

A smple least-sguares fit can be performed to estimate the fractal dimenson D. Note that the
fracta dimenson mug, by definition, be an integer even if its numerica estimation is not.

Figure 14 (left) illudrates the data points <?,> as a function of the time shift k. The other haf of
Figure 14 (right) shows the fractd dimension D estimated for each system. The curves shown on the | eft
of Figure 14 correspond to the four responses of Figures 2 and 13. The mean <?,> is plotted in solid
line and the 2-s confidence intervas are shown in dashed lines. Very little variability can be observed,
meaning that the fractal character of the curve is consistent throughout the analysis. The model assumed
in equation (9) dtates that straight lines of dopes equd to —D should be observed. Thisis especidly the
case for the linear responses 10 and 60.

On the right of Figure 14, three main categories of dynamics can be observed. When the initid
momentum ranges from 10™ to 1, little energy is provided by the secondary particle x, and the two-
particle model behaves as a single degree-of-freedom. The corresponding fracta dimension is logicaly
found close to one. The second category of dynamic systems corresponds to cases where the energy



inputted by the light particle x, is Sgnificant enough to influence the heavy partide X;. Then, the system
is truly a two-particle system. Figure 14 shows thet the fractal dimension is close to two when theinitid
momentum ranges from 3x10** to 3x10™. The last category of dynamic behavior is chaotic with a
fractd dimension that oscillates between one and two. This is because the dynamics of these systems
trangtion very rapidly from single degree-of-freedom linear O = 1) to multiple degrees-of-freedom
nonlinear and chaotic (D = 2). It corresponds to cases where the initid momentum of particle x, isequa
to 7x10" or grester. Except for the case of chaotic behavior, the estimated fractd is insensitive to the
initid pogdition and only the leve of energy inputted by particle x, matters.
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Fig. 14: Increments and Fractal Dimensions of the Two-particle Systems.
(Left: Sgnal increments <?> versus time shift k. Right: Fractal dimensions D for each system.
Shown on the left and from bottom to top are the average increment curves for the 10", 60™,
100" and 150" systems. Shown on the right are the fractal dimensions for all 169 systems.)

This example illugtrates that powerful features can be implemented that can effectively characterize
awide variety of dynamic behaviors. Of course, we cannot siress enough the importance of selecting
features that are relevant to the gpplication investigated and useful to the andyst. Time-frequency
andysis techniques encountered in structurd dynamics include the power spectrd density, power
cepstrum, cyclo-dationarity anadyss, Willer-ville transform, wavelet transform, spectrogram and
Karhunen-Loéve decompostion. Many time-frequency andysis techniques, however, are based on
assumptions that red-world signads may not dways satisfy. Generd-purpose features can dternatively
be extracted from probability density functions, shock response specira, tempord and Setistical
moments (mean, variance, energy, kurtods, etc.) and fractd andyss. In addition, festures can be
extracted from parametric models best fitted to data sets. The modd fitting techniques that have been
gpplied to engineering mechanics problems with success include linear regression (such as AR, ARX),
nonlinear regresson (such as ARMA), neurdl networks, statistical models and kriging models.

V1. CONCLUSION: CAN NUMERICAL PREDICTABILITY BE ASSESSED?



This publication discusses the concepts of modding, uncertainty quantification, modd vaidation and
numerica predictability. Not only does uncertainty refer to parametric variability and lack of knowledge,
but it can dso be seen as an integra component of the numerical model. In light of this conception of
uncertainty, modd validation is defined as an atempt to identify regions of the design space where the
mode “bresks down” or uncertainty is too important. Predictability refers to the ability to quantify the
accuracy of the nmodd in regions of the design space where physical observations are not available.
Modd vdidation must rely on carefully planed experiments that provide an assessment of redity for the
largest possble array of configurations and operationd conditions. Parametric cdibration is a pre-
requisite that permits to reduce some of the discrepancy between physica observation and model
output but under no circumstance should a cdibrated modd be considered vadidated. The issue of
feature extraction, or how to characterize the dynamics of time series, is dso discussed and the
efficiency of afew techniquesisillustrated with asmple moded of eementary particle interaction.

The ultimate god of uncertainty andyss and mode vdidation experiments is to guarantee that
numericd models accuratdy represent redity, especidly when testing is not an option. In addition,
confidence in the prediction must be assessed. Assessing predictability based on vaidation experiments
is an area of open research to a great extent. Reference [22] develops a Bayesan melding framework
for datidicd inference of amulation models that integrates diagnostic checking, mode vdidation,
hypothesis testing and model selection methods. The approach proposed builds on conventiond
Bayesian inference, goes beyond parametric cdibration but stops short of addressing the predictability
issue. Another interesting attempt is made in Reference [23]. The authors present a cdibration technique
that integrates the notion of predictive confidence regions by quantifying and propageting resdud errors
between cdlibrated models and experimentd data sets. By systematicaly quantifying al sources of
uncertainty, their procedure can assess the prediction’s confidence regions and monitor model
inadequacy errors.

To the quedtion “Can numerical predictability be assessed?” our opinion is therefore a
cautious yes given that adequate vdidation experiments are performed. However, this is a difficult
problem, far from being resolved. The aforementioned techniques are currently being investigated at Los
Alamos for assessing the predictive accuracy of computer codes for hydrodynamic and structura
mechanics gpplications.
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